National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
QUANTUM MECHANICAL STUDY OF PHASE STABILITY IN METALLIC SYSTEMS
Káňa, Tomáš ; Vřešťál, Jan (referee) ; Paidar,, Václav (referee) ; Černý, Miroslav (referee) ; Šob, Mojmír (advisor)
This work presents a theoretical study of stability of phases in selected metallic systems. We propose a model of structural transformations in transition metal disilicides MoSi2, CrSi2, VSi2 and TiSi2 and in Pd thin films grown on cubic substrates W(001) and Nb(001). The obtained results yield the total energy proles for the structural transformations studied, the activation energies needed for each individual transformation and an estimate of the temperature at which the structure can transform. The total energies are calculated by full-potential linearized augmented plane waves (FLAPW) method incorporated in the WIEN2k code. Both generalized gradient approximation (GGA) and local density approximation (LDA) are employed for the exchange-correlation term. It turns out that temperatures corresponding to the activation energies of structural transformations in transition metal disilicides exceed their melting temperatures. Comparing the resulting total energy proles to those obtained by the semiempirical Bond Order interatomic potentials (BOP) substantially helps to adjust the fitting parameters of the BOPs. The estimated temperature of 168 K needed to transform the hcp structure of an innite Pd crystal into the dhcp structure explains the behavior of the Pd thin lm on W(001) and Nb(001) substrates. Pd lms deposited on W(001) substrate and thicker than about 100 monolayers undergo this transformation already at room temperature. Thinner lms need to be annealed at 400 K rst, due to their stronger interaction with the substrate. The difference between the computed result and a real temperature at which the hcp Pd lm transforms its structure to the dhcp can be explained by both the interaction between the lm and the substrate and by the inuence of the domain topology of the lm. Analyzing different models of transformation of the initial hcp Pd structure to the ground state fcc structure, we identied the optimum model that respects the domain topology of the Pd lm.
Study of hydrogen interaction with defects in thin metallic films
Hruška, Petr ; Čížek, Jakub (advisor) ; Krsjak, Vladimír (referee) ; Mathis, Kristián (referee)
Thin metallic films are particularly interesting as potential hydrogen storage materials as well as hydrogen sensitive optical sensors. Thin films with various microstructure from nanocrystalline to epitaxial can be relatively easily prepared by varying the deposition parameters. Deposition of multi-layers enables preparation of thin films with arbitrary composition. Defects structure plays a key role in hydrogen absorption. Hydrogen atoms segregated at open volume defects reduce their formation energy leading to enhan- ced concentration of hydrogen-induced defects in the material. Moreover hydrogen diffusion along dislocations and grain boundaries facilitates hydrogen absorption in the metal lattice. Thin films clamped to the stiff substrate undergo anisotropic volume expansion during the hydrogen loading. As a consequence high stresses are induced in the film and can result in detachment of the film from the substrate. In this work hydrogen absorption in Gd and Pd films and Pd-Mg multi-layers was studied. Development of the defect structure of hydrogen-loaded films was investigated by means of variable energy positron annihilation spectroscopy com- bined with X-ray diffraction, atomic force microscopy and optical transmittance measurement. Complementary studies of interaction of hydrogen with defects in...
Study of hydrogen interaction with defects in thin metallic films
Hruška, Petr ; Čížek, Jakub (advisor) ; Krsjak, Vladimír (referee) ; Mathis, Kristián (referee)
Thin metallic films are particularly interesting as potential hydrogen storage materials as well as hydrogen sensitive optical sensors. Thin films with various microstructure from nanocrystalline to epitaxial can be relatively easily prepared by varying the deposition parameters. Deposition of multi-layers enables preparation of thin films with arbitrary composition. Defects structure plays a key role in hydrogen absorption. Hydrogen atoms segregated at open volume defects reduce their formation energy leading to enhan- ced concentration of hydrogen-induced defects in the material. Moreover hydrogen diffusion along dislocations and grain boundaries facilitates hydrogen absorption in the metal lattice. Thin films clamped to the stiff substrate undergo anisotropic volume expansion during the hydrogen loading. As a consequence high stresses are induced in the film and can result in detachment of the film from the substrate. In this work hydrogen absorption in Gd and Pd films and Pd-Mg multi-layers was studied. Development of the defect structure of hydrogen-loaded films was investigated by means of variable energy positron annihilation spectroscopy com- bined with X-ray diffraction, atomic force microscopy and optical transmittance measurement. Complementary studies of interaction of hydrogen with defects in...
QUANTUM MECHANICAL STUDY OF PHASE STABILITY IN METALLIC SYSTEMS
Káňa, Tomáš ; Vřešťál, Jan (referee) ; Paidar,, Václav (referee) ; Černý, Miroslav (referee) ; Šob, Mojmír (advisor)
This work presents a theoretical study of stability of phases in selected metallic systems. We propose a model of structural transformations in transition metal disilicides MoSi2, CrSi2, VSi2 and TiSi2 and in Pd thin films grown on cubic substrates W(001) and Nb(001). The obtained results yield the total energy proles for the structural transformations studied, the activation energies needed for each individual transformation and an estimate of the temperature at which the structure can transform. The total energies are calculated by full-potential linearized augmented plane waves (FLAPW) method incorporated in the WIEN2k code. Both generalized gradient approximation (GGA) and local density approximation (LDA) are employed for the exchange-correlation term. It turns out that temperatures corresponding to the activation energies of structural transformations in transition metal disilicides exceed their melting temperatures. Comparing the resulting total energy proles to those obtained by the semiempirical Bond Order interatomic potentials (BOP) substantially helps to adjust the fitting parameters of the BOPs. The estimated temperature of 168 K needed to transform the hcp structure of an innite Pd crystal into the dhcp structure explains the behavior of the Pd thin lm on W(001) and Nb(001) substrates. Pd lms deposited on W(001) substrate and thicker than about 100 monolayers undergo this transformation already at room temperature. Thinner lms need to be annealed at 400 K rst, due to their stronger interaction with the substrate. The difference between the computed result and a real temperature at which the hcp Pd lm transforms its structure to the dhcp can be explained by both the interaction between the lm and the substrate and by the inuence of the domain topology of the lm. Analyzing different models of transformation of the initial hcp Pd structure to the ground state fcc structure, we identied the optimum model that respects the domain topology of the Pd lm.
commodity futures on precious metals
Schwartz, Peter ; Málek, Jiří (advisor) ; Paholok, Igor (referee)
The aim of the thesis is to clarify the importance of diversifying investment portfolios with the help of precious metals at the present time and to analyze the fluctuation of precious metals market in terms of demand, supply and price developments. The core of the thesis focuses on analysis of the market of precious metals from 1998 to 2011 The used work method is comparison of precious metals between themselves and the world stock indices, the method of analysis in separate calculations of indicators, the method of deduction from the results of calculations.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.